SPECTRUM

Chemical Fact Sheet

Nitrogen

Chemical Abstract Number (CAS #) 7727-37-9
Synonyms MOL-NITROGEN-; NITROGEN-GAS-; NITROGEN-14; Azote- (French); Nitrogeno- (Spanish)
Analytical Methods SM4500NH3 - SM4500NO2 - SM4500NO3 - SM4500NORG
Atomic Symbol N

Synopsis from the CRC Handbook of Chemistry and Physics 92nd Edition 2011-2013

Nitrogen — (L. nitrum, Gr. nitron, native soda; genes, forming, N; at. wt. 14.0067(2); at. no. 7; m.p. –210.00 °C; b.p. –195.798 °C; tc –146.94 °C; density 1.2506 g/L; sp. gr. liquid 0.808 (–195.8 °C), solid 1.026 (–252 °C); valence 3 or 5. Discovered by Daniel Rutherford in 1772, but Scheele, Cavendish, Priestley, and others about the same time studied “burnt or dephlogisticated air,” as air without oxygen was then called. Nitrogen makes up 78% of the air, by volume. The atmosphere of Mars, by comparison, is 2.6% nitrogen. The estimated amount of this element in our atmosphere is more than 4000 trillion tons. From this inexhaustible source it can be obtained by liquefaction and fractional distillation. Nitrogen molecules give the orange-red, blue-green, blue-violet, and deep violet shades to the aurora. The element is so inert that Lavoisier named it azote, meaning without life, yet its compounds are so active as to be most important in foods, poisons, fertilizers, and explosives. Nitrogen can be also easily prepared by heating a water solution of ammonium nitrite. Nitrogen, as a gas, is colorless, odorless, and a generally inert element. As a liquid it is also colorless and odorless, and is similar in appearance to water. Two allotropic forms of solid nitrogen exist, with the transition from the α to the β form taking place at –237 °C. When nitrogen is heated, it combines directly with magnesium, lithium, or calcium; when mixed with oxygen and subjected to electric sparks, it forms first nitric oxide (NO) and then the dioxide (NO2); when heated under pressure with a catalyst with hydrogen, ammonia is formed (Haber process). The ammonia thus formed is of the utmost importance as it is used in fertilizers, and it can be oxidized to nitric acid (Ostwald process). The ammonia industry is the largest consumer of nitrogen. Large amounts of gas are also used by the electronics industry, which uses the gas as a blanketing medium during production of such components as transistors, diodes, etc. Large quantities of nitrogen are used in annealing stainless steel and other steel mill products. The drug industry also uses large quantities. Nitrogen is used as a refrigerant both for the immersion freezing of food products and for transportation of foods. Liquid nitrogen is also used in missile work as a purge for components, insulators for space chambers, etc., and by the oil industry to build up great pressures in wells to force crude oil upward. Sodium and potassium nitrates are formed by the decomposition of organic matter with compounds of the metals present. In certain dry areas of the world these saltpeters are found in quantity. Ammonia, nitric acid, the nitrates, the five oxides (N2O, NO, N2O3, NO2, and N2O5), TNT, the cyanides, etc. are but a few of the important compounds. Nitrogen gas prices vary from 2¢ to $2.75 per 100 ft3 (2.83 cu. meters), depending on purity, etc. Production of elemental nitrogen in the U.S. is more than 9 million short tons per year. Natural nitrogen contains two isotopes, 14N and 15N. Ten other isotopes are known.

Environmental Impact

43,725 individuals exposed (est) from actual observed occupational use of nitrogen.

Environmental Fate

CONSTITUTES ABOUT 75.5% BY WEIGHT OR 78.06% BY VOL OF ATMOSPHERE; FOUND FREQUENTLY IN VOLCANIC OR MINE GASES, GASES FROM SPRINGS & GASES OCCLUDED IN MINERALS & ROCKS FIXED OR COMBINED NITROGEN IS PRESENT IN MANY MINERAL DEPOSITS.

Disposal

Release to atmosphere.


DISCLAIMER - Please Read






Florida-Spectrum List of Services
Florida-Spectrum Homepage